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TNA4780ta and AESB2320, 2014-15
Part 1 Final Examination - 11 March

STUDENT #

This exam can count toward the Part 1 score for either TN4780ta or AESB2320.
Circle here which course you wish the exam to count toward:

AESB2320 TN4780ta

Turn in this exam with your answer sheet.

Write your solutions on your answer sheet, not here. In all cases show your work.

To avoid any possible confusion,
state the equation numbers and figure numbers of equations and figures you use.

Beware of unnecessary information in the problem statement.

Newtonian fluid (density p, viscosity p) is contained
between two parallel flat plates a distance o apart. The
plates are held at an angle (3 to the vertical as shown at
right. The top plate is fixed in place, while the bottom
plate moves upward (in the negative-z direction) with
velocity V <0.
a. Derive an equation for the velocity of the fluid as a
function of position in the gap between the plates,
v,(X). (25 pts)

b. Under what conditions does all the fluid flow upwards: i.e., under what
conditions is v,(x) < 0 for the entire gap? Be quantitative in your answer. (Only 5

pts - don't spend too long on this if you don't get it.)

Note: the derivation of the falling film from BSL Sect. 2.2 (1* edition) is given at the

back of this exam.
(30 points)

Water (density 1000 kg/m’, viscosity 0.001 Pa s) flows
through a packed bed (a water purifier) in a setup shown
at right. The packing contains particles 5 mm in diameter
and has porosity 0.4. There is a layer of stagnant water
above the packed bed, and the discharge of the filter is
below the level of water in the bottom tank, as shown.
Above the water in both tanks, the pressure is 1 atm. The
packed bed is cylindrical, 0.3 m thick and 0.1 m in
diameter. Assume all the flow potential is dissipated in
the packed bed, not in any of the other tubes or fittings of
the apparatus. (Note picture not drawn to scale.)
a. What is the potential gradient driving the flow of
water through the packed bed?
b. What is the total flow rate of water Q through the

packed bed, in m?/s?
(25 points)

p=1atm
water 0.5m
packed bed I 0.3m
p=||1atm 0.2m
I 04m
wa-ter
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3. A drainage system is designed to carry rainwater off the top of a hill to a river below.
The pipe is 0.2 m in diameter, and its "height of protuberances" 0.0008 m. The
properties of water are given in problem 2. There are two sharp (not rounded) 90°
elbows and in the pipe plus a sharp (not rounded) constriction at the entrance, as
shown below. The pipe discharges into the air above the river. The pipe comprises
10, 15 and 20-m segments (going down the slope, sideways, and down the slope), but
because it is set on the side of the hill the change in elevation along the pipe is only
23 m. At the top of the pipe is a reservoir of water of depth 2 m. An engineer wants
to know the water velocity through the pipe.

a. Write out the equation that must be satisfied by the velocity in the pipe. Plug in
all the numbers you can into this equation.
b. Solve this equation for velocity in the pipe. Start by assuming that the flow is

highly turbulent (very large Re).
(35 points)

view from front view from side

23 m

20 m

4. Rocky proposes that one could eliminate the need for locks in canals by dissolving
material in the water in the canal to turn it into a Bingham plastic. Suppose the canal
were 1 m deep, with side walls very far (infinitely far) apart. The bottom surface of
the canal, of course, does not move. Suppose the density of the fluid is 1000 kg/m”.
Suppose the canal tilts at an angle 89.8° to the vertical (i.e., it is close to horizontal).
What yield stress 1, would be required to prevent flow of the Bingham plastic
downward through the canal?

(10 points)
properties of water
1=0.001 Pas p = 1000 kg/m’
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Note that we always take the “in” and “out” directions in the direction of the
positive - and z-axes (in this problem these happen to coincide with the
direction of momentum transport). The notation |, 5, means “‘evaluated at
x4 Ax.”

When these terms are substituted into the momentum balance of Eq. 2.1-1,
we get

EWals — LWrdewns F WAvazzlz=G
— WAz pv,-; + LWAz pgcos f =0 (2.2-6)
Because v, is the same at z = 0 as it is at z = L for each value of z, the third

and fourth terms just cancel one another. We now divide Eq. 2.2-6 by
LW Az and take the limit as Az approaches zero:

lim (L'-*"Zx‘—*') = pgcosf (2.2-7)

The quantity on the left side may be recognized as the definition of the first
derivative of 7, with respect to #. Therefore, Eq. 2.2-7 may be rewritten as

2 Tey = pg COS f (2.2-8)
dz

This is the differential equation for the momentum flux 7,. It may be

integrated to give
Ty, = pgrcos f 4 C; (2.2-9)

The constant of integration may be evaluated by making use of the boundary
condition at the liquid-gas interface (see §2.1):

B.C. 1: at =0, 7,=0 (2.2-10)



Elow of a Falling Film
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Substitution of this boundary condition into Eq. 2.2-9 reveals that C; = 0.
Hence the momentum-flux distribution is

Tay = PET €O fB (2.2-11)

as shown in Fig. 2.2-2.
If the fluid is Newtonian, then we know that the momentum flux is related

to the velocity gradient according to

iy == e (2.2-12)

T
’ dzx

Substitution of this expression for 7, into Eq. 2.2-11 gives the following
differential equation for the velocity distribution:

% = i (M)r (2.2-13)
E 7

This equation is easily integrated to give

Uz = -—(p_gM) .’U2 + CZ (2.2'—‘14)
24

The constant of integration is evaluated by using the boundary condition
B.C. 2: at x =4, u,=10 (2.2-15)

Substitution of this boundary condition into Eq. 2.2-14 shows that C, =
(pg cos B[2p)6% Therefore, the velocity distribution is

i, i ﬁg%‘-’isf [1 - (”—;’) 2} (2.2-16)

Hence the velocity profile is parabolic. (See Fig. 2.2-2.)
Once the velocity profile has been found, a number of quantities may be

calculated:
(i) The maximum velocity v, .,y is clearly the velocity at « = 0; that is

g
&521‘15_8 (2.2-17)
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